Monday, December 14, 2009

Implementing PACS in a Hospital Setting

Over the past two decades, groups of computer scientists, electronic design engineers, and physicians from universities and industry have achieved an electronic environment for the practice of radiography, with PACS comprising the radiography component of this revolution. It has become evident recently that the efficiencies and cost savings of PACS are more fully realized when they are part of an enterprise-wide electronic medical record. The installation of PACS requires careful planning by all the various stakeholders over many months prior to installation. All of the users must be aware of the initial disruption that will occur as they become familiar with system processes and procedures.

Modern fourth-generation PACS is linked to radiology and hospital information systems. PACS consists of electronic acquisition sites-a robust network intelligently managed by a server as well as multiple viewing sites and an archive. The details of how these components are linked and their workflow analysis determines the success of PACS. As PACS evolves over time, components are frequently replaced, and the users must continually learn about new and improved functionalities. The digital medical revolution is rapidly being adopted in many medical centers, improving patient care.
The PACS workflow itself must be described before we elaborate on its role in network systems. Image acquisition by cassettes using films is replaced by specially designed filmless cassettes, which can be used several times. The basic components of any PACS system include an image acquisition device (such as film cassettes, video frame grabbers, and digital imaging modalities like CT or MRI), an image display station, and database management and image storage devices. Patient images are acquired from the radiography or digital imaging modalities and sent to the PACS workstation. The images are viewed and interpreted there, and the interpretation results are made available to the physicians within the hospital network. An image storage backup system stores images on optical disks and MODs. Images are stored for a time period specified in each hospital's state and local rules.
The images from a hospital without a radiologist can be sent to other hospitals. Modalities including CT, MRI, ultrasound, computed radiography, and nuclear medicine send images to PACS servers in other hospitals directly or via a network gateway. Images can be transmitted on a regional hospital local area network (LAN), then onto high-speed phone circuits to reach the hospital with PACS. They then go onto the network core and PACS servers.
References
1. E.L. Siegel and B.I. Reiner, "Filmless Radiology at the Baltimore VA Medical Center: A 9 Year Retrospective," Comput Med Imaging Graph, 27 (2–3) 101–109 (2003).
2. P. Mildenberger, M. Eichelberg, E. Martin. Introduction to the DICOM standard," Eur Radiol., 12 (4) 920–927 (2002). Epub 2001 Sept. 15.
3. B.L.T. Guthrie, C. Price, J. Zaleski, E. Backensto, "Digital Imaging and Communications in Medicine (DICOM) Archive is a Dynamic Component of a Clinician Image-related Workflow Solution," J Digit Imaging, 14 (2 Suppl 1)190–193 (2001).
4. J. Eng, J.P. Leal, W. Shu, G. Yang Liang, "Collaboration System for Radiology Workstations," Radiographics, 22 (5) e5 (2002).

No comments:

Post a Comment